INTERNATIONAL JOURNAL OF HUMANITIES AND ART RESEARCH
INTERNATIONAL JOURNAL OF HUMANITIES AND ARTS RESEARCH, Academic Journal, Art, Research
Article Template

You can download Article Word Template.

Download Template
Open Archives Initiative Protocol for Metadata Harvesting
Link
All Journal

You can find all our journals list at below link.

Journals List

Mobilya Tasarımında Biyomimikri Yaklaşımının Sürdürülebilirlikle İlişkisinin İrdelenmesi

International Journal of Humanities and Art Researches 2023 Kış Dönemi Pages: [332-349]
Dr.Öğr.Üyesi. Mahmut Atilla SÖĞÜT ; Arş.Gör.. Ayşenur KANDEMİR
DOI: https://doi.org/10.5281/zenodo.10281215

Abstract


The term "biomimicry" simply means "mimicking nature." It is an important method used in disciplines such as architecture and engineering, where the process of overcoming nature's challenges is observed, analyzed, and applied to provide solutions to design problems. In today's world, biomimicry is utilized to develop solutions for various problems in different fields, shifting the perspective from viewing nature hierarchically to learning from it and what it can teach us. For this method to be fully reflected in design, it is not sufficient to merely imitate the form and function; it is essential to ensure that the process does not harm nature and that the resulting product is sustainable.

In this study, a literature review was conducted and document analysis method was used within the framework of the data obtained on the subject. Document analysis is defined as "a systematic process of examining or evaluating both printed and electronic (computer-based and internet-based) documents" (Bowen, 2009: 27). In the study, firstly, the concepts of 'biomimicry' and 'sustainability' are mentioned within the framework of the literature. In addition, evaluations were made in terms of material, form and need in furniture design and analyzed from the perspective of biomimicry. In the light of the information obtained from these evaluations, document analyses were made about form and material, and the biomimicry approach was used in design proposals that can serve as an example within the scope of furniture. Within the framework of comparative analysis and recommendations, it is concluded that interior designers should infuse a biomimicry phase into the programming phase of the design process.

Through the evaluations, the forms and materials derived from biomimicry were subjected to in-depth analysis. This allowed the researchers to draw insights and inspiration from nature's designs and solutions to various challenges. The findings from these analyses were then utilized to propose design ideas that exemplify the principles of biomimicry within the scope of furniture design. By integrating biomimicry into the design process, the study aimed to address not only functional and ergonomic requirements but also sustainability aspects. This comprehensive approach seeks to promote the development of furniture that not only mimics nature's forms but also takes into account its materials, textures, and overall ecological impact. By doing so, the study aimed to contribute to the creation of more sustainable and nature-inspired furniture designs.

For furniture to be sustainable, its structure should have a long lifespan, and as a result, the materials used should yield a strong and functional output with minimal usage. This means achieving high efficiency with minimal materials. One example of materials that can be used in furniture structures is biodegradable plastics. Plastic materials are frequently chosen in furniture design due to ease of mass production, the ability to achieve desired forms, durability, and low cost. However, the long-lasting nature of plastics in the environment has become an environmental concern. The rise of plastic pollution as one of the world's significant problems, along with its high carbon footprint resulting from the use of fossil fuels during production, necessitates the search for alternatives.

Researchers have been inspired by microorganisms' ability to break down biopolymers into organic matter and have produced biodegradable plastic materials. These materials include polylactic acid, a plant-based plastic material mixed with cornstarch, and polycaprolactone, a biodegradable polyester widely used in biomedical applications. Industrial enzymes, along with enzyme protectors that help separate enzymes from each other by a few nanometers, are dispersed in base plastics, and these enzymes remain dormant until triggered by hot water or compost soil. Once activated, the enzymes break down the plastic material, converting it into compost. This approach prevents harm to the environment and adheres to the principle of sustainability, a fundamental aspect of biomimicry. By transforming widely used plastic materials in the furniture sector that could take hundreds of years to degrade, we can achieve a more environmentally friendly approach through biodegradable alternatives inspired by biomimicry principles.

The required qualities in the materials used for the structure and surface coating in design differ significantly. For the design to have a long lifespan, the surface material may need to be hygienic and hydrophobic. Unlike structural materials, surface materials directly interact with the human body, making their texture and ergonomic properties crucial. Flexible plates that mimic fish scales and armadillo shell are examples of materials that can be used for furniture surface coating. Animals from different families have flexible armored skins characterized by hard scales embedded in soft tissues. The individual moving hard segments provide protection against predators while enabling efficient movement due to their flexibility.

Inspired by this observation, Chintapalli et al. (2014) developed a system using hexagonal glass plates placed on a rubber substrate. They found that segmented plates not only provide flexibility but also delay fracturing. Moreover, in the developed glass-rubber system, they utilized a segmented design to increase puncture resistance by up to 70%. Such a material, particularly when used to enhance the flexibility of seating furniture, can increase the furniture's durability and, consequently, its lifespan. Additionally, it can provide ergonomic comfort by adapting to the kinetic and curvilinear structure of the human body.

In conclusion, in order to reduce the environmental impact of industrially produced furniture designs, innovative designers need to adopt alternative perspectives. Moving away from a reductionist approach and embracing a holistic biomimetic perspective can lead to sustainable design outcomes. Achieving this also involves using materials produced with green technology. By integrating biomimetic principles and utilizing biomimetic materials, furniture designers can achieve sustainable designs that not only minimize environmental impact but also enhance user comfort and well-being.

Özet


Doğa ve doğadaki organizmalar, milyonlarca yıl boyunca çok çeşitli zorluklara karşı verimli, esnek ve sürdürülebilir çözümler geliştirmiş olduklarından, sürdürülebilir çözümler için önemli bir kaynaktır. Biyomimikri yöntemi bu kaynağı, yani doğanın problem çözme sürecini gözlemleme ve analiz etme ve bunu tasarım problemlerine uygulamaktadır. Bu çalışmada öncelikle biyomimikri ve biyomimikri tasarım yaklaşımları çerçevesinde literatür taraması yapılmıştır. Daha önce yapılan araştırmalar biyomimetik yöntemlerin iç mekanlarda, özellikle mobilyalarda uygulandığını gösterirken, indirgemeci bir yaklaşım sergileyerek yüzeysel bir düzeyde sınırlandırılmıştır. Biyomimikri yaklaşımının, malzeme, doku gibi biyomimikrinin çalışma sistemi dikkate alınmadan yalnızca biçime odaklanıldığından sürdürülebilirliğe katkısının kısıtlı olduğu görülmüştür. Bu nedenle bu çalışma, mobilya tasarımında antropometrik ve ergonomik ihtiyaçlara cevap verirken sadece formda değil, malzeme, doku ve diğer yön seçimlerinde de sürdürülebilirliğin nasıl sağlanabileceğine cevap aramaktadır. Biyomimikri yaklaşımı yüzeysel düzeyden derin düzeye doğru ilerleyen üç seviyeden oluşmaktadır. Üçüncü seviye yani derin düzey biyomimikri yaklaşımı, yalnızca doğanın biçim ve işlevini taklit etmenin değil, aynı zamanda tasarım sürecinde de ekosistemin taklit edilerek çevre dostu olmasını sağlamanın gerekliliğini vurgulamaktadır. Derin düzey biyomimikri yaklaşımı sürdürülebilirliğe en fazla katkıda bulunan seviyedir. Bu nedenle mobilya tasarımında endüstriyel üretimin çevreye verdiği zararı azaltmak ve sürdürülebilir çözümler üretmek için yenilikçi tasarımcıların derin düzeydeki biyomimikri yaklaşımını kullanarak alternatif bir bakış açısı geliştirmesi gerektiğine değinilmiştir. Ardından mobilyanın iki bileşeninden biri olan strüktürde kullanılacak malzemenin tasarımın dayanıklılığı ve verimliliği açısından güçlü; yüzey kaplama malzemesinin ise esnek ve hijyenik olması gerektiğinden, iki ayrı kategoride farklı biyomimetik malzemeler doküman analizi yöntemiyle incelenmiştir. Yapılan analiz sonucunda biyomimikri yöntemiyle oluşturulmuş malzemelerin biyomimikri düzeyi, mobilya üretiminde sürdürülebilirliğe katkısı ortaya konmuştur. Ardından bu bulgular mobilya tasarımı kapsamında biyomimikri ilkelerini örnekleyen tasarım fikirleri önermek için kullanılmıştır. Bu kapsamlı yaklaşım, yalnızca doğanın biçimlerini taklit etmekle kalmayan, aynı zamanda malzemelerini, dokularını ve genel ekolojik etkisini de hesaba katan mobilyaların geliştirilmesini teşvik etmeyi amaçlamaktadır. Doğadan ilham alarak strüktür ve yüzey kaplama malzemeleri için önerilen biyomimikrik seçeneklerin kullanılmasının, çevre dostu mobilya tasarımlarının gerçekleştirilmesine katkı sağlayacağı sonucuna varılmıştır.


Keywords:
Biomimicry, Biomimetics, Sustainability, Furniture, Design
Anahtar Kelimeler:
Biyomimikri, Biyomimetik, Sürdürülebilirlik, Mobilya, Tasarım

References


Alanbari DHA, Alkindi APDSK, Al_Ahbabi SH (2022). Biomimicry Design Spiral: Nature as a model. Journal of Algebraic Statistics, 13 (2): 2335-2345.

Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miller DJ, Wiedenmann J, Salih A, Matz MV (2008). Diversity and evolution of coral fluorescent proteins. PloS one, 3(7): 1-12.

Anwar R, Rusman MS, Kamaruzaman MF (2018). “The Potential of Biomimicry as an Influence for Local-Inspired Product Design”, In Proceedings of the Art and Design International Conference, Pp.479-486, Singapore: Springer.

Benyus JM (2002). Biomimicry: Innovation inspired by nature. New York: Morrow

Benyus JM (2011). A biomimicry primer. The Biomimicry Institute and the Biomimicry Guild. ET, 27.09.2023, Erişim: https://asknature.wpenginepowered.com/wp-content/uploads/2012/06/A_Biomimicry_Primer_2011Handbook.pdf

Bowen GA (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2): 27-40.

Bumgardner MS, Nicholls DL (2020). Sustainable practices in furniture design: A literature study on customization, biomimicry, competitiveness, and product communication. Forests, 11(12): 1277.

Chintapalli RK, Mirkhalaf M, Dastjerdi AK, Barthelat F (2014). Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspiration & biomimetics, 9(3): 1-9.

DelRe C, Jiang Y, Kang P, Kwon J, Hall A, Jayapurna I, Xu T (2021). Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature, 592(7855): 558-563.

Eadie L, Ghosh TK (2011). Biomimicry in textiles: past, present and potential. An overview. Journal of the royal society interface, 8(59): 761-775.

Eggleston G, Lima I (2015). Sustainability issues and opportunities in the sugar and sugar-bioproduct industries. Sustainability, 7(9): 12209-12235.

Faidi M (2017). Feasability of Bacterial Cellulose in Furniture Design. Bachelor Thesis. Aalto University, Helsinki.

Fiorentino C, Hoyos CM (2017). Biomimicry. The International Journal of Designed Objects, 8(1): 1-15.

Güneş S, Demirarslan D (2020). Sürdürülebilirlik ve Mobilya Tasarımında Çevreci Yaklaşımlar. Uluslararası İnsan ve Sanat Araştırmaları Dergisi, 5(6): 81-99.

Hales TC (2001). The Honeycomb Conjecture. Discrete & Computational Geometry, 25(1): 1-22.

Hastrich C. (2006). The Biomimicry Design spiral. Biomimicry Newsletter, 4(1): 5-6.

Ilieva L, Ursano I, Traista L, Hoffmann B, Dahy H (2022). Biomimicry as a sustainable design methodology—Introducing the ‘Biomimicry for Sustainability’framework. Biomimetics, 7(2): 37-49.

Jamei E, Vrcelj Z (2021). Biomimicry and the built environment, learning from nature’s solutions. Applied Sciences, 11(16): 7514-7533.

Kalay T, Yalçın Ç, Kavut İE (2023). ‘Pandemi’ Kavramının Konut ve Kurgusal Mekan Tasarımları Üzerindeki Etkisi. Uluslararası İnsan ve Sanat Araştırmaları Dergisi, 8(2): 114-128.

Kennedy E, Fecheyr-Lippens D, Hsiung BK, Niewiarowski PH, Kolodziej M (2015). Biomimicry: A path to sustainable innovation. Design Issues, 31(3): 66-73.

Kennedy EB (2017). Biomimicry: Design by analogy to biology. Research-Technology Management, 60(6): 51-56.

McGregor SL (2013). Transdisciplinarity and biomimicry. Transdisciplinary Journal of Engineering & Science, 4: 57-65.

Nicolin P (2014). Le proprietà della resilienza. Lotus International, 155: 52-57.

Ortiz J, Zhang G, McAdams DA (2018). A model for the design of a pomelo peel bioinspired foam. Journal of Mechanical Design, 140(11): 1-5.

Özdoğan E, Demir A, Seventekin N (2006). Lotus Effect, Textile and Apparel, 16(1): 287-290.

Özel Y, Ürük ZF (2021). Mobilya- Biçim- Tercih. Avrupa Bilim ve Teknoloji Dergisi, (23): 589-600.

Pawlyn M (2019). Biomimicry in architecture. London: Routledge.

Peters T (2011). Nature as measure: The biomimicry guild. Architectural Design, 81(6): 44-47.

Rossin KJ (2010). Biomimicry: nature’s design process versus the designer’s process. WIT Transactions on Ecology and the Environment, 138: 559-570.

Subaşı T, Çınar H, Çağatay K (2017). Mobilya Sektöründe Kullanılan Kompozit Malzemelerin İnsan Yaşamına ve Çevreye Etkileri. İleri Teknoloji Bilimleri Dergisi, 6(3): 557-571.

Şahin S (2018). Mobilya tasarımında ekolojik malzeme açısından kağıt kullanımı. Mimarlık ve Yaşam, 3(1): 53-61.

Tümer MB (2020). Üç boyutlu yazıcılar ve günümüz mimarisinde kullanımı. Yüksek lisans tezi. Işık Üniversitesi, İstanbul.

Vincent JF, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl AK (2006). Biomimetics: its practice and theory. Journal of the Royal Society Interface, 3(9): 471-482.

Volstad NL, Boks C (2012). On the use of Biomimicry as a Useful Tool for the Industrial Designer. Sustainable Development, 20(3): 189-199.

URL-1: ET: 22.05.2023, Erişim: https://biomimicry.org/biomimicry-design-spiral/

URL-2: ET: 09.06.2023, Erişim: https://www.scmp.com/lifestyle/arts-culture/article/3050228/plastic-alternative-bioplastic-made-vegetable-oils-fats-fish

URL-3: ET: 18.12.2022, Erişim: https://asknature.org/innovation/colorful-fibers-inspired-by-proteins-found-in-discosoma-coral/


Submitted at: 2023-12-19 12:39:43
Accepted at: 2023-12-19 12:42:36
To Journal: 2023 Kış Dönemi

Author Details:
Mahmut Atilla ,SÖĞÜT ORCID:0000-0003-3955-6033 Mimar Sinan Güzel Sanatlar Üniversitesi, İç Mimarlık Bölümü
Ayşenur ,KANDEMİR ORCID:0000-0002-9558-2984 İstanbul Nişantaşı Üniversitesi, İç Mimarlık (İngilizce) Bölümü

To Reference: SÖĞÜT, Mahmut Atilla , KANDEMİR, Ayşenur (2023), Mobilya Tasarımında Biyomimikri Yaklaşımının Sürdürülebilirlikle İlişkisinin İrdelenmesi. International Journal of Humanities and Art Researches,Aralık 2023, Issue:4, Volume:8, Pages:332-349

Viewed: 692 Downloaded: 163